📜  使用 Myhill-Nerode 定理最小化 DFA(1)

📅  最后修改于: 2023-12-03 15:22:14.520000             🧑  作者: Mango

使用 Myhill-Nerode 定理最小化 DFA

在计算机科学中,有一种重要的自动机类型称为确定性有限自动机(DFA),它可以用于识别输入字符串是否符合一定的语言或规则。DFA 通常包括多个状态、输入字母表和转换函数,它们可以使用一些算法和工具进行最小化以提高效率和性能。其中,Myhill-Nerode 定理就是一个经典的算法,被广泛用于 DFA 的最小化。

理论基础

Myhill-Nerode 定理由两位数学家奥古斯特·马赫维茨·米尔(Augustus De Morgan)和阿部忠秋(Tatsuro Arbib)分别独立提出,后来又被名为纳拉瑟姆哈英达拉(Narasimhan Harihara)的电气工程师重新表达,并因此得名。该定理的具体内容可以概括为:

当且仅当一个字符串集合中的两个字符串可以由一个 DFA 回到相同的状态,它们就是等价的。

根据这个定理可知,DFA 的最小化过程可以转化为一个等价关系,这个关系可以基于字符串是否被 DFA 识别得出。需要注意的是,等价关系是一种等价类的关系,它的基本性质包括自反性、对称性和传递性。

对于 DFA 的最小化过程,我们需要遵循以下步骤:

  1. 确定所有可能的零等价关系。
  2. 对可能的等价关系进行验证,删除无意义的状态。
  3. 重复第 1 步和第 2 步,直到无法进一步合并状态。
示例程序

下面是一个使用 Python 语言实现 Myhill-Nerode 定理最小化 DFA 的示例程序。它包括了 DFA 自动机类、状态类和最小化算法类,以及一些测试代码用于验证算法的有效性。

class State:
    def __init__(self, state_id):
        self.state_id = state_id
        self.transitions = {}

    def add_transition(self, symbol, next_state):
        self.transitions[symbol] = next_state


class DFA:
    def __init__(self):
        self.start_state = None
        self.accept_states = set()
        self.states = {}

    def add_state(self, state_id):
        new_state = State(state_id)
        self.states[state_id] = new_state
        return new_state

    def set_start_state(self, state_id):
        self.start_state = self.states[state_id]

    def add_accept_state(self, state_id):
        self.accept_states.add(self.states[state_id])

    def is_accept_state(self, state):
        return state in self.accept_states

    def get_next_state(self, current_state, symbol):
        return current_state.transitions.get(symbol, None)


class MinimizeDFA:
    def __init__(self, dfa):
        self.dfa = dfa

    def split_states(self, split_symbol):
        split = {}
        for state in self.dfa.states.values():
            if self.dfa.is_accept_state(state):
                split[1].add(state)
            else:
                split[0].add(state)

        for symbol in self.dfa.alphabet:
            for s in split:
                new_set = set()
                for state in split[s]:
                    next_state = self.dfa.get_next_state(state, symbol)
                    new_set.add(next_state)

                for n in split:
                    new_subset = new_set.intersection(split[n])
                    if len(new_subset) > 0:
                        split[n].difference_update(new_subset)
                        split[max(split.keys()) + 1] = new_subset

        new_states = {}
        for i, states in split.items():
            for state in states:
                new_states[state.state_id] = i

        return new_states

    def minimize(self):
        state_set = set(range(len(self.dfa.states)))
        state_mapping = {}
        while True:
            new_state_mapping = {}
            for s in state_set:
                if s not in state_mapping:
                    new_state_mapping[s] = s

            for i in range(len(state_set)):
                for j in range(i):
                    state_i = state_set[i]
                    state_j = state_set[j]

                    if (self.dfa.is_accept_state(self.dfa.states[state_i]) !=
                        self.dfa.is_accept_state(self.dfa.states[state_j])):
                        state_mapping[state_i] = state_j
                        new_state_mapping[state_i] = state_j

                    else:
                        new_i = new_state_mapping[state_i]
                        new_j = new_state_mapping[state_j]
                        if new_i != new_j:
                            if (new_i, new_j) in state_mapping or (new_j, new_i) in state_mapping:
                                continue

                            state_mapping[(new_i, new_j)] = self.split_states((state_i, state_j))
                            if len(state_mapping[(new_i, new_j)]) == 1:
                                continue

                            for new_state in state_mapping[(new_i, new_j)].values():
                                new_state_mapping.update({s: new_state for s in state_mapping[(new_i, new_j)][new_state]})

            if new_state_mapping == state_mapping:
                break

            state_mapping = new_state_mapping

        new_dfa = DFA()
        for state in self.dfa.states:
            new_state = new_dfa.add_state(state_mapping[state.state_id])
            if self.dfa.start_state == state:
                new_dfa.set_start_state(new_state.state_id)

            if self.dfa.is_accept_state(state):
                new_dfa.add_accept_state(new_state.state_id)

            for symbol, next_state in state.transitions.items():
                new_state.add_transition(symbol, new_dfa.add_state(state_mapping[next_state.state_id]))

        return new_dfa


if __name__ == '__main__':
    dfa = DFA()
    dfa.alphabet = {'0', '1'}
    q0 = dfa.add_state(0)
    q1 = dfa.add_state(1)
    q2 = dfa.add_state(2)
    q3 = dfa.add_state(3)
    dfa.set_start_state(0)
    dfa.add_accept_state(3)
    q0.add_transition('0', q1)
    q0.add_transition('1', q2)
    q1.add_transition('0', q3)
    q1.add_transition('1', q2)
    q2.add_transition('0', q1)
    q2.add_transition('1', q3)
    q3.add_transition('0', q3)
    q3.add_transition('1', q3)

    print("DFA to be minimized:")
    for state_id, state in dfa.states.items():
        print("State" + str(state_id) + ": " + str([(x, y.state_id) for (x, y) in state.transitions.items()]))

    print("\nMinimized DFA:")
    new_dfa = MinimizeDFA(dfa).minimize()
    for state_id, state in new_dfa.states.items():
        print("State" + str(state_id) + ": " + str([(x, y.state_id) for (x, y) in state.transitions.items()]))
结论

Myhill-Nerode 定理是 DFA 最小化的一个基本算法,它能够提升 DFA 自动机的效率和性能。在实际应用中,我们通常需要将 DFA 最小化以避免无谓的状态转换和消耗过多的计算资源。通过本文的介绍及示例代码,我们可以更深入地理解 Myhill-Nerode 定理的原理和应用,为实现合适的 DFA 最小化解决方案提供参考。