问题1.如果a和b是两个奇数正整数,使得a> b,则证明两个数(a + b)/ 2和(a – b)/ 2中的一个是奇数,而另一个是偶数。
解决方案:
Any odd positive integer is of the form 2q+1 or, 2q+3 for some whole number q.
a > b (given)
a = 2q+3 and b = 2q+1.
Therefore, (a+b)/2 = [(2q+3) + (2q+1)]/2
⇒ (a+b)/2 = (4q+4)/2
⇒ (a+b)/2 = 2q+2 = 2(q+1) which is an even number.
Now, (a-b)/2
⇒ (a-b)/2 = [(2q+3)-(2q+1)]/2
⇒ (a-b)/2 = (2q+3-2q-1)/2
⇒ (a-b)/2 = (2)/2
⇒ (a-b)/2 = 1 which is an odd number.
Therefore, one of the two numbers (a+b)/2 and (a-b)/2 is odd and the other is even.
问题2。证明两个连续正整数的乘积可被2整除。
解决方案:
Let two consecutive positive integers as n and n+1
Therefore, product = n(n+1)
= n2 + n
Any positive integer is of the form 2q or 2q+1.
Let n = 2q
⇒ n2 + n = (2q)2 +2q
⇒n2 + n = 4q2 +2q
⇒ n2 + n = 2(2q2 +q)
Therefore, n2 + n is divisible by 2.
n = 2q+1
⇒ n2 + n = (2q+1)2 + (2q+1)
⇒ n2 + n = (4q2+4q+1 +2q+1)
⇒ n2 + n = (4q2+6q+2)
⇒ n2 + n = 2(2q2+3q+1)
Thus, n2 + n is divisible by 2
Therefore, the product of two consecutive positive integers is divisible by 2
问题3.证明三个连续正整数的乘积可被6整除。
解决方案:
Let n be any positive integer.
Three consecutive positive integers are n, n+1 and n+2.
Any positive integer can be of the form 6q or 6q+1 or 6q+2 or 6q+3 or 6q+4 or 6q+5.
For n= 6q,
⇒ n(n+1)(n+2)= 6q(6q+1)(6q+2)
⇒ n(n+1)(n+2)= 6[q(6q+1)(6q+2)]
⇒ n(n+1)(n+2)= 6m, which is divisible by 6. [m= q(6q+1)(6q+2)]
For n= 6q+1,
⇒ n(n+1)(n+2)= (6q+1)(6q+2)(6q+3)
⇒ n(n+1)(n+2)= 6[(6q+1)(3q+1)(2q+1)]
⇒ n(n+1)(n+2)= 6m, which is divisible by 6. [m= (6q+1)(3q+1)(2q+1)]
For n= 6q+2,
⇒ n(n+1)(n+2)= (6q+2)(6q+3)(6q+4)
⇒ n(n+1)(n+2)= 6[(3q+1)(2q+1)(6q+4)]
⇒ n(n+1)(n+2)= 6m, which is divisible by 6. [m= (3q+1)(2q+1)(6q+4)]
For n= 6q+3,
⇒ n(n+1)(n+2)= (6q+3)(6q+4)(6q+5)
⇒ n(n+1)(n+2)= 6[(2q+1)(3q+2)(6q+5)]
⇒ n(n+1)(n+2)= 6m, which is divisible by 6. [m= (2q+1)(3q+2)(6q+5)]
For n= 6q+4,
⇒ n(n+1)(n+2)= (6q+4)(6q+5)(6q+6)
⇒ n(n+1)(n+2)= 6[(3q+2)(3q+1)(2q+2)]
⇒ n(n+1)(n+2)= 6m, which is divisible by 6. [m= (3q+2)(3q+1)(2q+2)]
For n= 6q+5,
⇒ n(n+1)(n+2)= (6q+5)(6q+6)(6q+7)
⇒ n(n+1)(n+2)= 6[(6q+5)(q+1)(6q+7)]
⇒ n(n+1)(n+2)= 6m, which is divisible by 6. [m= (6q+5)(q+1)(6q+7)]
Hence, the product of three consecutive positive integers is divisible by 6.
问题4.对于任何正整数n,请证明n 3 – n可被6整除。
解决方案:
Let, n be any positive integer. Any positive integer can be of the form 6q,6q+1, 6q+2,6q+3,6q+4,6q+5. (From Euclid’s division lemma for b= 6)
We have n3 – n = n(n2-1)= (n-1)n(n+1)
For n= 6q,
⇒ (n-1)n(n+1)= (6q-1)(6q)(6q+1)
⇒ (n-1)n(n+1)= 6[(6q-1)q(6q+1)]
⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= (6q-1)q(6q+1)]
For n= 6q+1,
⇒ (n-1)n(n+1)= (6q)(6q+1)(6q+2)
⇒ (n-1)n(n+1)= 6[q(6q+1)(6q+2)]
⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= q(6q+1)(6q+2)]
For n= 6q+2,
⇒ (n-1)n(n+1)= (6q+1)(6q+2)(6q+3)
⇒ (n-1)n(n+1)= 6[(6q+1)(3q+1)(2q+1)]
⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= (6q+1)(3q+1)(2q+1)]
For n= 6q+3,
⇒ (n-1)n(n+1)= (6q+2)(6q+3)(6q+4)
⇒ (n-1)n(n+1)= 6[(3q+1)(2q+1)(6q+4)]
⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= (3q+1)(2q+1)(6q+4)]
For n= 6q+4,
⇒ (n-1)n(n+1)= (6q+3)(6q+4)(6q+5)
⇒ (n-1)n(n+1)= 6[(2q+1)(3q+2)(6q+5)]
⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= (2q+1)(3q+2)(6q+5)]
For n= 6q+5,
⇒ (n-1)n(n+1)= (6q+4)(6q+5)(6q+6)
⇒ (n-1)n(n+1)= 6[(6q+4)(6q+5)(q+1)]
⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= (6q+4)(6q+5)(q+1)]
Hence, for any positive integer n, n3 – n is divisible by 6.
问题5.证明如果正整数的形式为6q + 5,那么对于某个整数q,形式为3q + 2,但反之则不。
解决方案:
Let n= 6q+5
Any positive integer can be of the form 3k,3k+1,3k+2.
Therefore, q can be 3k,3k+1,3k+2.
If q= 3k, then
⇒ n= 6q+5
⇒ n= 6(3k)+5
⇒ n= 18k+5 = (18k+3)+ 2
⇒ n= 3(6k+1)+2
Therefore, n= 3m+2, where m is 6k+1
If q= 3k+1, then
⇒ n= 6q+5
⇒ n= 6(3k+1)+5
⇒ n= 18k+6+5 = (18k+9)+ 2
⇒ n= 3(6k+3)+2
Therefore, n= 3m+2, where m is 6k+3
If q= 3k+2, then
⇒ n= 6q+5
⇒ n= 6(3k+2)+5
⇒ n= 18k+12+5 = (18k+15)+ 2
⇒ n= 3(6k+5)+2
⇒ n= 3m+2, where m is 6k+5
Therefore, if a positive integer is of form 6q + 5, then it is of the form 3q + 2 for some integer q.
Conversely,
Let n= 3q+2
And we know that a positive integer can be of the form 6k,6k+1,6k+2,6k+3,6k+4,6k+5.
So, now if q=6k+1 then
⇒ n= 3q+2
⇒ n= 3(6k+1)+2
⇒ n= 18k + 5
⇒ n= 6(3k)+5
⇒ n=6m+5
m is some integer
q=6k+2 then
⇒ n= 3q+2
⇒ n= 3(6k+2)+2
⇒ n= 18k + 6 +2 = 18k+8
⇒ n= 6 (3k + 1) + 2
⇒ n = 6m + 2
⇒ n= 6m+2,
m is some integer
It is not of the form 6q + 5.
Therefore, if n is of the form 3q + 2, then is necessary won’t be of the form 6q + 5.
问题6.证明任何形式为5q +1的正整数的平方都具有相同的形式。
解决方案:
n=5q+1
On squaring it,
⇒ n2= (5q+1)2
⇒ n2= (25q2+10q+1)
⇒ n2= 5(5q2+2q)+1
⇒ n2= 5m+1, where m is some integer. [For m = 5q2+2q]
Therefore, the square of any positive integer of the form 5q + 1 is of the same form.
问题7.证明任何正整数的平方形式为3m或3m +1,但形式不为3m + 2。
解决方案:
Let positive integer be of the form 3q, 3q+1,3q+2. (From Euclid’s division lemma for b= 3)
If n= 3q,
Then, on squaring
⇒ n2= (3q)2 = 9q2
⇒ n2= 3(3q2)
⇒ n2= 3m, where m is some integer [m = 3q2]
If n= 3q+1,
Then, on squaring
⇒ n2= (3q+1)2 = 9q2 + 6q + 1
⇒ n2= 3(3q2 +2q) + 1
⇒ n2= 3m + 1, where m is some integer [m = 3q2 +2q]
If n= 3q+2,
Then, on squaring
⇒ n2= (3q+2)2 = 9q2 + 12q + 4
⇒ n2= 3(3q2 + 4q + 1) + 1
⇒ n2= 3m + 1, where m is some integer [m = 3q2 + 4q + 1]
Therefore, square of any positive integer is of the form 3m or 3m + 1 but not of the form 3m + 2.
问题8.证明对于某个整数q,任何正整数的平方均采用4q或4q +1的形式。
解决方案:
a=bq+r (by Euclid’s division lemma)
According to the question, b = 4.
a = 4p + r, 0 < r < 4
r = 0, a = 4p
a2 = 16p2 = 4(4p2) = 4q, where q = 4p2
r = 1, a = 4p + 1
a2 = (4p + 1)2 = 16p2 + 1 + 8p = 4(4p + 2) + 1 = 4q + 1, where q = (4p + 2)
r = 2, a = 4p + 2
a2 = (4p + 2)2 = 16p2 + 4 + 16p = 4(4p2 + 4p + 1) = 4q, where q = 4p2 + 4p + 1
r = 3, a = 4k + 3
a2 = (4p + 3)2 = 16p2 + 9 + 24p = 4(4p2 + 6p + 2) + 1
= 4q + 1, where q = 4p2 + 6p + 2
Therefore, the square of any positive integer is either of the form 4q or 4q + 1 for some integer q.
问题9.证明某个正整数q的正整数的平方的形式为5q或5q + 1、5q + 4。
解决方案:
According to Euclid’s division lemma,
a = bm+r
According to the question, b = 5.
a = 5m + r, 0 < r < 5
r = 0 a = 5m
a2 = 25m2 = 5(5m2) = 5q, where q = 5m2
When r = 1, we get, a = 5m + 1
a2 = (5m + 1)2 = 25m2 + 1 + 10m = 5m(5m + 2) + 1 = 5q + 1, where q = m(5m + 2)
r = 2, a = 5m + 2
a2 = (5m + 2)2 = 25m2 + 4 + 20m = 5(5m2 + 4m) + 4 = 4q + 4, where q = 5m2 + 4m
r = 3, a = 5m + 3
a2 = (5m + 3)2 = 25m2 + 9 + 30m = 5(5m2 + 6m + 1) + 4
= 5q + 4, where q = 5m2 + 6m + 1
r = 4, a = 5m + 4
a2 = (5m + 4)2 = 25m2 + 16 + 40m = 5(5m2 + 8m + 3) + 1
= 5q + 1, where q = 5m2 + 8m + 3
Therefore, the square of any positive integer is of the form 5q, 5q + 1,5q + 4 for some integer q.
问题10。表明奇数整数的平方形式为8q +1,对于某个整数q。
解决方案:
a = bq+r , 0 < r < b (by Euclid’s lemma)
Putting b=4 for the question,
⇒ a = 4q + r, 0 < r < 4
For r = 0, a = 4q, which is an even number.
For r = 1, a = 4q + 1, which is an odd number.
On squaring,
⇒ a2 = (4q + 1)2 = 16q2 + 1 + 8q = 8(2q2 + q) + 1 = 8m + 1, where m = 2q2 + q
For r = 2, a = 4q + 2 = 2(2q + 1), which is an even number.
For r = 3, a = 4q + 3, which is an odd number.
On squaring,
⇒ a2 = (4q + 3)2 = 16q2 + 9 + 24q = 8(2q2 + 3q + 1) + 1
= 8m + 1, where m = 2q2 + 3q + 1
Therefore, the square of an odd integer is of the form 8q + 1, for some integer q.