什么是二项式概率分布示例?
概率是某事发生的可能性。当我们说某事的概率时,它意味着某事的可能性有多大。有些事件的概率很高,很可能发生,有些事件的概率较小,这意味着它们不太可能发生。示例 – 投掷无偏硬币得到尾巴的概率是 1/2,掷骰子得到大于 4 的数字的概率是 1/3。换句话说,它是事件作为实验结果发生的机会的量度。
概率论是一种非常强大的工具,用于组织、解释和应用信息,在数据科学、交易、马匹投注等各个领域都非常有用。
二项式实验
二项式实验是一个实验,其中有固定数量的试验(例如 n),每个试验都独立于其他试验,只有 2 个结果:成功或失败,并且每个结果的概率在试验之间保持不变。二项式实验的例子,Binomial Experiment Possible Outcomes Did 2 appear on the dice? Yes / No Condition of a statement True / False Tossing a coin Heads / Tails
二项式概率
当给定任何一个二项式实验,其中我们进行多次随机实验(例如,掷硬币 7 次或掷骰子 10 次),那么在 n 次试验中找出某个结果的概率称为它的二项式概率.假设一个二元实验有n 个独立的试验,有两个结果:
- 成功
- 失败
现在在n次试验中获得r次成功的概率是:
P = nCr.pr.qn-r
其中p = 成功概率, q =失败概率,使得p + q = 1。
对称二项分布的图形表示
二项分布由多个伯努利事件组成。伯努利分布和二项分布的区别在于,伯努利分布的期望值给出了单次试验的预期结果,而二项分布的期望值表明了预期获得特定结果的次数。二项分布图表示达到我们期望结果特定次数的可能性。
示例问题
问题 1:如果一个无偏的硬币被抛 7 次,那么找出恰好得到 3 个正面的概率。
解决方案:
Given number of trials(n) = 7, number of success(r)= 3
= Probability of success = Probability of getting a head in a trial (p) = 1/2
= Probability of failure = Probability of not getting a head in a trial (q) = 1/2
Now applying binomial probability formula:
= Probability of getting exactly 3 heads (P) = nCr.pr.qn – r
= 7C3.(1/2)3 × (1/2)4
= (7!/3!.4!) × (1/2)7
= 35/128
问题2:一个骰子被掷了5次,得到一个奇质数被认为是成功的。找出概率:
- 正是一次成功
- 至少一次成功
解决方案 :
Given: Number of trials (n) = 5,
Number of odd prime numbers from 1 to 6 = 2 (3, 5)
= Probability of success = Probability of getting a 3 or 5 on the dice(p) = 2/6 = 1/3
= Probability of failure = Probability of not getting 1, 2, 4, 6 on the dice(q) = 1 – 1/3 = 2/3
- Exactly one success(r = 1)
Applying binomial probability formula:
=> Probability of getting exactly 1 success (P) = nCr.pr.qn-r
= 5C1. (1/3)1. (2/3)4
= 80/243 (Ans)
- At least one success( r = 1, 2, 3, 4, 5)
Now since it is given at least one succes, add all the binomial probabilities for r = 1, 2, 3, 4, 5
Applying binomial probability formula:
= Probability of getting at least 1 success (P) = P(r = 1) + P(r = 2) + P(r = 3) + P(r = 4) + P(r = 5)
(getting 1 success) (2 success) (3 success) (4 success) (5 success)
= 1 – P(r = 0) (getting no success)
= 1 – nC0.p0.qn – 0
= 1 – 5C0.(1/3)0.(2/3)5
= 1 – 32/243
= 211/243
问题 3:小丑从一副洗好的 52 张牌中抽出 4 张牌并替换。求他从套牌中至少抓到 3 张王的概率。
解决方案:
Given: Number of cards to be drawn(n) = 4
Success = getting a king
Probability of getting a king card from 52 random cards(p) = 4/52 = 1/13 (Since total no of kings = 4 and each card is replaced after every pick)
Probability of failure(q) = 1 – 1/13 = 12/13
= Probability of getting at least 3 king in this case = P(r = 3) + P(r = 4)
(getting 3 kings) (getting 4 kings)
Applying binomial probability formula = 4C3.(1/13)3.(12/13)1 + 4C4.(1/13)4.(12/13)0
= (1/13)3.(4.12/13 + 1/13) (Taking common on both sides)
= 49/28561
问题 4:您进行的 MCQ 测试只有 5 个问题。每道题有4个选项,每道题可以有一个或多个正确答案。由于您没有为测试学习任何内容,因此您决定随机标记所有答案。找出您在 5 道题中恰好答对 3 道题的概率,才能通过考试。
解决方案:
Given: Number of questions(n) = 5
Now to find the probability of success, first, find the total
no of the ways a question can be answered.
As shown in the figure above, there are 4 cases :
= number of ways to answer a question when only 1 option is correct = 4C1 = 4 ways
= number of ways to answer a question when 2 options are correct = 4C2 = 6 ways
= number of ways to answer a question when 3 options are correct = 4C3 = 4 ways
= number of ways to answer a question when 4 options are correct = 4C4 = 1 way
Adding up all ways, the total no of ways = 15 ways.
Now out of these 15 ways, only one will be correct for a particular question.
Thus, the probability of success(i.e. getting a correct answer) = 1/15
And the probability of failure = 1 – 1/15 = 14/15
Now,
The probability that you get exactly 3 question correct out of 5
= 5C3.(1/15)3.(14/15)
= 10. (196/759375)
= 392/151875